PHOTOCHEMICAL REARRANGEMENT OF STEROIDAL HYDRAZONE AND ACYLHYDRAZONE (1)

Hiroshi Suginome and Tsutomu Uchida,
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
(Received in Japan 31 March 1973; received in UK for publication 11 May 1973)
Photochemical transformations of the hydrazones of aromatic ketones and aldehydes have been reported by Binkley. (2) We wish to report on the results of the photolyses of steroidal hydrazone and the N-acyl derivatives. It has been found that the latter underwent a new photoinduced rearrangement to lactams whereas the former afforded mainly the products due to the $N-N$ bond homolysis. This distinct difference between the modes of the photolyses of hydrazone and its acyl derivatives is rather striking.

Androsterone hydrazone 1a, m.p. $230-231^{\circ} \mathrm{C}$, (u.v. due to $\mathrm{n}, \pi^{*} ; \lambda \max 198 \mathrm{~nm}$, E; $3900, \mathrm{CH}_{3} \mathrm{OH}$), prepared from androsterone (3.4 mol) and an excess of hydraz ine hydrate (10 ml) in ethanol (30 ml) under reflux, was photolyzed in dry dioxane (0.013 M) by a 15 W low pressure Hg arc lamp for 7 hours. The examination of the products by the t lc indicated the formation of at least 6 compounds apart from the recovery of $1 \mathrm{a}(18 \%)$, and the preparative tlc of the products afforded two major compounds, androsterone 4 (11%) and a new compound 5a, m.p. $247-248^{\circ} \mathrm{C}$, (8%). The mass spectrum ($\mathrm{M}^{+} 576$) and the elemental analysis of 5 a wereinaccord with the molecular formula $\mathrm{C}_{38} \mathrm{H}_{60} \mathrm{O}_{2} \mathrm{~N}_{2}$ and 5 a was confirmed to be the corresponding azine by the spectral data (n.m.r., $\mathrm{CDCl}_{3} \tau 9.22,3 \mathrm{H}, \mathrm{S}$, 19-methyl, $\tau 9.14,3 \mathrm{H}, \mathrm{S}, 18$-methyl, $\tau 6.02,1 \mathrm{H}, \mathrm{S}, 3 \beta-\mathrm{H} ; \mathrm{i} . \mathrm{r}, \mathrm{nujol}, 1668 \mathrm{~cm}^{-1}$, $\mathrm{N}=\mathrm{C}, 3400 \mathrm{~cm}^{-1}, \mathrm{OH} ; \mathrm{u} . \mathrm{v} .$, methanol, $\lambda_{\max , 2} 210 \mathrm{~nm}, \varepsilon ; 15000,228 \mathrm{~nm}, \mathrm{E}$; 3700) and by direct comparison with azine prepared by the ground state reaction. (3)

On the other hand, N, O-diacetylandrosterone hydrazone, 1b, m.p. 218-220 ${ }^{\circ} \mathrm{C}$, (4) (u.v., due to $n, \pi^{*} ; \lambda \max 231 \mathrm{~nm}, \varepsilon ; 6200, \mathrm{CH}_{3} \mathrm{OH}$) in dry dioxane (O .005 M)

1a $\quad R^{\prime}=R^{2}=R^{3}=H$
1b. $R^{\prime}=R^{2}=A C, R^{3}=H$
$1 \approx \quad R^{\prime}=R^{2}=R^{3}=A C$

$2^{\mathrm{R}^{\prime}=\mathrm{AC}}$
$10 R^{\prime}=A c$

Aa $\quad \mathrm{R}^{\prime}=\mathrm{H}$
for 28 hours by a 15 W low pressure Hg arc lamp afforded the products (four com. pounds by tlc analysis), from which a mixture of O-acetylandrosterone 4 b and 0 -acety1-13a-androsterone $\underset{\sim}{5}$, (5) a compound 6, m.p. 232-234 ${ }^{\circ} \mathrm{C}$, o-acetyl-D-homo-5a-17a-aza-androsterone 2 and 3-O-acetyl-D-homo-5a-17a-aza-13a-androsterone $\underset{\sim}{10}$ were isolated in the yields of $23 \%, 26 \%, 11 \%$ and 19% by the preparative tlc. The latter two were confirmed by direct comparison with the authentic specimens obtained by the Beckmann rearrangements of 3-0-acetylandrosterone oxime and 3-o-acetyl-13a-androsterone oxime. (6) The n.m.r. and u.v. spectra and the mass spectral fragmentation pattern of $\underset{\sim}{6}$ were nearly identical with the starting 1 m . However, the i.r. spectrum of $\underset{\sim}{6}$ differs from that of $\underset{\sim}{1 b}$, and therefore $\underset{\sim}{6}$ should be an isomer of 1 b with respect to the $C=N$ linkage, namely the NHAc group of $\underset{\sim}{6}$ syn with respect to the $C_{13}-C_{17}$ bond.

The photolysis of $N, N, O-t r i a c e t y l a n d r o s t e r o n e ~ h y d r a z o n e, ~ 1 c, ~ m . p . ~ 151-~$ $153^{\circ} \mathrm{C}$, (7) (u.v. due to n, π^{*}; $\lambda \max 231 \mathrm{~nm}, \mathrm{E}$; $3000, \mathrm{CH}_{3} \mathrm{OH}$) under the condition described above was found to proceed extremely slowly, and afforded only a mixture of ketones $\underset{\sim}{4 b}$ and $\underset{\sim}{11}$ and ill-defined products.

Mechanistic insight of these photoinduced reactions are under investigation, and on the basis of some preliminary results only brief comments will be made. Homolysis of the $N-N$ bond of 1 in the solvent cage would generate an imino radical $\underset{\sim}{2}$. The hydrogen abstraction of $\underset{\sim}{2}$ from the solvent would lead to an imine ${\underset{\sim}{\sim}}_{3}$ and this would be hydrolyzed to give $\underset{\sim}{4}$ during photolysis (with a trace of $\mathrm{H}_{2} \mathrm{O}$) or in work-up stage. Dimerization of the imino radical $\underset{\sim}{2}$ would afford the observed azine 5a. On the other hand, the lactams 9 and 10 would be formed via the photochemical formation of a diaziridine intermediate 2 followed by the rearrangement to e.g., \cap and hydrolysis during photolysis or work-up stage. Diaziridines in general are known to be isolatable species, and the ground state reaction of diaziridines are also known to lead to the compounds other than amides. (8) Therefore, rearrangement from the hypothetical diaziridine to the lactams would also seem to be photochemical.

Irradiation of 1 b in dioxane by the monochromatic light of $233 \pm 4 \mathrm{~nm}$ ($8.8 \times 10^{-5} \mathrm{Mol}$) with or without oxygen caused a gradual descrease of the absorption maximum of 1 b , and after ca. 2.5 hours the absorption at 231 nm of 1 m
had vanished leaving only a weak absorption maximum at 212 nm , which remained unchanged on further irradiation by the monochromatic light of 212 nm . (9) We regard these results as an evidence for the involvement of an excited singlet of $\underset{\sim}{1 b}$ in the transformation from $\underset{\sim}{1 b}$ into $\underset{\sim}{7}$.

REFERENCES AND NOTES

1) Photoinduced transformations XXII. The previous paper, H. Suginome and T. Uchida, preceding paper.
2) R. W. Binkley, Tetrahedron Letters, 1893 (1969); 2085 (1970).
3) The azine 5 a was obtained through the preparation of O-diacetylazine 5 b , m.p. $238-240^{\circ} \mathrm{C}$, from O-acetylandrosterone, (2.5 mmol), hydrazine hydräte (12 mmol) and $\mathrm{HCl}(0.3 \mathrm{ml}$) in ethanol (4 ml) at room temperature, followed by the hydrolysis.
4) Prepared by the usual method at room temperature.
5) These two isomeric ketones were readily distinguishable by the chemical shift differences of both the 18- and the $19-m e t h y l$ groups.
6) preceding paper.
7) Prepared in the usual manner at ca. $60^{\circ} \mathrm{C}$.
8) E. Schmitz, Angew. Chem. Internat. Edit., 3, 333 (1964).
9) Jasco CRM-FA spectro-irradiator was used in these experiments.

ACKNOWLEDGEMENT

The authors are grateful to the Ministry of Education of Japan for financial assistance. The authors thank to Miss T. Okayama for the measurements of the 100 MHz NMR spectra.

